
MATH2050C Assignment 8

Deadline: March 19 , 2024.

Hand in: 4.1 no. 11b, 12d, 15; 4.2 no. 1c, 2b, 11d, 12; Supp. Ex. no. 3.

Section 4.1 no. 7, 8, 9bd, 10b, 11b, 12bd, 15.

Section 4.2 no. 1bc, 2bd, 11cd, 12.

Supplementary Problems

1. Prove by the Limit Theorem (see next page) that limx→c p(x) = p(c) for any polynomial
p and real number c.

2. Let f be a function A and c a cluster point of A. Show that limx→c |f(x)| = |L| whenever
limx→c f(x) = L.

3. Let f be a non-negative function onA and c a cluster point ofA. Suppose that limx→c f(x) =
L for some L. Show that limx→c

√
f(x) =

√
L. Suggestion: Consider L > 0 and L = 0

separately.

See next page
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The Limit Theorem for Functions

8.1 Limit Theorem Let c be a cluster point of A and f, g are functions on A satisfying
f(x)→ L, g(x)→M as x→ c respectively. Then

1. limx→c(αf + βg) = αL+ βM .

2. limx→c(fg)(x) = LM .

3. limx→c

(
f

g

)
(x) =

L

M
provided M 6= 0.

By induction, (1) and (2) of this theorem also hold for finitely many functions.

8.2 Limit Theorem Let c be a cluster point of A and fk, k = 1, · · · , n are functions on A
satisfying fk(x)→ Lk as x→ c. Then

1. limx→c
∑n

k=1 αkfk(x) =
∑n

k=1 αkLk.

2. limx→c(f1f2 · · · fn)(x) = L1L2 · · ·Ln .

In our textbook this theorem is proved by the Sequential Criterion. In class we proved it by
using the ε-δ definition. Here we repeat it for the product rule. Indeed, we have

|(fg)(x)− LM | = |f(x)g(x)− LM |
= |(f(x)− L)g(x) + L(g(x)−M)|
≤ |g(x)||f(x)− L|+ |L||g(x)−M | .

As g(x)→ M , for ε = 1, there is some δ1 such that |g(x)−M | < 1 for x ∈ A, 0 < |x− c| < δ1.
So |g(x)| ≤ |M |+ 1 there. We have

|(fg)(x)− LM | ≤ (|M |+ 1)|f(x)− L|+ |L||g(x)−M | ,

whenever 0 < |x − c| < δ1. Now given ε > 0, as f(x) → L and g(x) → M , there are δ2, δ3
such that |f(x) − L| < ε/2(|M | + 1) for 0 < |x − c| < δ2 and |g(x) −M | < ε/2(|L| + 1) for
0 < |x− c| < δ3. It follows that for x, 0 < |x− c| < δ where δ = min{δ1, δ2, δ3},

|(fg)(x)− LM | ≤ (|M |+ 1)ε/2(|M |+ 1) + |L|ε/2(|L|+ 1) < ε ,

done.

8.3 Sequential Criterion The following statements are equivalent:

(a) limx→c f(x) = L ;

(b) For any sequence {xn}, xn 6= c, xn → c, f(xn)→ L as n→∞.

This criterion has three consequences. First we use it to show some common limits exist.

Example 1 Let p be a polynomial. For c ∈ R, limx→c p(x) = p(c). A polynomial is well-defined
everywhere on the real line. It is of the form a0 + a1x + · · · + anx

n for some n. It was shown
in Chapter 3 that limn→∞ p(xn) = p(c) for any sequence xn → c. By the Sequential Criterion
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limx→c p(x) = p(c).

Example 2 Let p, q be two polynomials. For c satisfying q(c) 6= 0, limx→c p(x)/q(x) = p(c)/q(c) .
This conclusion comes from Example 1, Sequential Criterion and the quotient rule for sequences.

Example 3 In Chapter 3 it was shown that the function xp/q, p, q ∈ N, is well-defined for

x ∈ [0,∞). And for any sequence xn → c ∈ [0,∞), x
p/q
n → cp/q. Immediately it follows from the

Sequential Criterion that limx→c x
p/q = cp/q.

The second consequence is the Divergence Criteria which follow directly from the Sequential
Criterion.

8.4 Divergence Criteria limx→c f(x) does not exist in either one of the following two cases:

(a) There is xn ∈ A, xn 6= c, xn → c, such that {f(xn)} is unbounded;

(b) There are xn, yn ∈ A not equal to c and xn, yn → c such that f(xn)→ L1, f(yn)→ L2 with
L1 6= L2.

Example 4 limx→0 1/xp, p ∈ N, does not exist. Consider the sequence xn = 1/n→ 0, we have
1/xpn = np →∞. By the Divergence Criterion (a) this limit does not exist.

Example 5 limx→0 sin 1/x does not exist. Consider two sequences xn = 1/2πn and yn =
1/(2πn+π/2). Then sin 1/xn = sin 2πn = 0 and sin 1/yn = sin(2πn+π/2) = 1 for all n. Hence
L1 = 0 and L2 = 1. By Divergence Criterion (b), the limit does not exist.

The third consequence of the Sequential Criterion is the Squeeze Theorem.

8.5 Squeeze Theorem Suppose that f(x) ≤ g(x) ≤ h(x), x ∈ A, and

lim
x→c

f(x) = lim
x→c

h(x) = L .

Then limx→c g(x) = L.

This theorem follows from the corresponding theorem for sequences and the Sequential Criterion.

Example 6 limx→0 sinx = 0. Using the estimate 0 ≤ sinx ≤ x for x ∈ [0, 1] and the fact that
the sine function is odd, −|x| ≤ sinx ≤ |x|, x ∈ [−1, 1]. A direct application of the Squeeze
Theorem gives the desired limit.

Example 7 limx→0 sinx/x = 1. This follows readily from the estimate x − x3/6 ≤ sinx ≤
x, x ∈ [0, 1] (see below). Derive both sides by x, we have 1 − x/6 ≤ sinx/x ≤ 1. Since sinx/x
is even, this estimate holds on [−1, 0) ∪ (0, 1]. By Squeeze Theorem limx→0 sinx/x = 1.

Trigonometric Functions

A rigorous definition of the sine and cosine functions will not be introduced until Chapter 8 of
our textbook. However, in order to have more diverse examples we are obliged to use them. Here
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we list some basic facts concerning these functions which are used in the subsequent development.

1.

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · , x ∈ R ,

2. The sine and cosine functions are 2π-periodic,

3. sin2 + cos2 x = 1, x ∈ R,

4. sin(x+ y) = sinx cos y + sin y cosx , and cos(x+ y) = cosx cos y − sinx sin y.

We derive from (1) the estimate

x− x3/3! ≤ sinx ≤ x, x ∈ [0, 1] .

Indeed,

sinx = x−
[(

x3

3!
− x5

5!

)
+

(
x7

7!
− x9

9!

)
+ · · ·

]
.

Since each term x2n+1/(2n+1)!−x2n+3/(2n+3)! is positive when x ∈ [0, 1], sinx ≤ x. Similarly,
one can prove the other inequality.


