MATH2050C Assignment 8

Deadline: March 19 , 2024.
Hand in: 4.1 no. 11b, 12d, 15; 4.2 no. 1c, 2b, 11d, 12; Supp. Ex. no. 3.

Section 4.1 no. 7, 8, 9bd, 10b, 11b, 12bd, 15.
Section 4.2 no. 1bc, 2bd, 11cd, 12.

Supplementary Problems
1. Prove by the Limit Theorem (see next page) that lim,_,.p(xz) = p(c) for any polynomial

p and real number c.

2. Let f be a function A and ¢ a cluster point of A. Show that lim,_,.|f(z)| = |L| whenever
lim, . f(z) = L.

3. Let f be a non-negative function on A and ¢ a cluster point of A. Suppose that lim,_,. f(x) =
L for some L. Show that lim,_.+/f(z) = VL. Suggestion: Consider L > 0 and L = 0
separately.

See next page
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The Limit Theorem for Functions

8.1 Limit Theorem Let ¢ be a cluster point of A and f,g are functions on A satisfying
f(z) = L,g(x) = M as x — c respectively. Then

1. limgc(af + Bg) = aL + M .

2. limy,.(fg)(x) = LM .

. L :
3. limg,_.. (g) (x) = i provided M # 0.
By induction, (1) and (2) of this theorem also hold for finitely many functions.

8.2 Limit Theorem Let ¢ be a cluster point of A and f,k = 1,--- ,n are functions on A
satisfying fi(z) — L as ¢ — ¢. Then

1. limx_w 2221 akfk(x) = ZZ:1 akLk.

In our textbook this theorem is proved by the Sequential Criterion. In class we proved it by
using the e-§ definition. Here we repeat it for the product rule. Indeed, we have

[(fg)(x) = LM| = |f(z)g(x) — LM]|
[(f(z) = L)g(x) + L(g(x) — M)
lg(@)||f(2) = LI+ [Ll|g(x) — M] .

As g(z) — M, for € = 1, there is some 0; such that |g(z) — M| < 1 for x € A,0 < |z —¢| < d;.
So |g(x)| < |M| + 1 there. We have

IN

((F9)(@) = LM| < (IM[ + 1)|f(z) = L] + | Ll|g(x) — M] ,

whenever 0 < |z — ¢| < 01. Now given € > 0, as f(x) — L and g(x) — M, there are Jz, 03
such that |f(x) — L| < ¢/2(|]M|+ 1) for 0 < |z — ¢| < 02 and |g(x) — M| < ¢/2(|L| + 1) for
0 < |z — c| < d3. Tt follows that for 2,0 < |z — ¢| < 6 where § = min{dy, d2,d3},

((Fo) (@) = LM| < (IM] + 1)e/2(|M[ + 1) + [Lle/2(]L] +1) <&,

done.

8.3 Sequential Criterion The following statements are equivalent:
(a) img—. f(z) = L ;

(b) For any sequence {z,},x, # ¢,x, — ¢, f(zy) — L as n — oc.
This criterion has three consequences. First we use it to show some common limits exist.

Example 1 Let p be a polynomial. For ¢ € R, lim,_,. p(z) = p(c). A polynomial is well-defined
everywhere on the real line. It is of the form ag + a1z + - -+ + a,z" for some n. It was shown
in Chapter 3 that lim,_,o p(z,) = p(c) for any sequence x,, — c¢. By the Sequential Criterion
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lim, . p(z) = p(c).

Example 2 Let p, ¢ be two polynomials. For ¢ satisfying ¢(c) # 0, limz—. p(z)/q(x) = p(c)/q(c) .
This conclusion comes from Example 1, Sequential Criterion and the quotient rule for sequences.

Example 3 In Chapter 3 it was shown that the function 22/, p,q € N, is well-defined for

x € ]0,00). And for any sequence x,, — ¢ € [0, 00), 2B/ epla, Immediately it follows from the

Sequential Criterion that limg,_,, 27/9 = ¢P/4.

The second consequence is the Divergence Criteria which follow directly from the Sequential
Criterion.

8.4 Divergence Criteria lim,_,. f(z) does not exist in either one of the following two cases:
(a) There is x,, € A, xy, # ¢, zy, — ¢, such that {f(z,)} is unbounded;

(b) There are z,,,y, € A not equal to ¢ and x,,y, — ¢ such that f(z,) — L1, f(yn) — Lo with
Ly # Lo.

Example 4 lim,_,01/2P,p € N, does not exist. Consider the sequence z,, = 1/n — 0, we have
1/x}, = n? — oo. By the Divergence Criterion (a) this limit does not exist.

Example 5 lim,_,gsin1/z does not exist. Consider two sequences x, = 1/2mn and y, =
1/(2mn+7/2). Then sinl/z, = sin27n = 0 and sin 1/y,, = sin(27rn + 7/2) = 1 for all n. Hence
L; =0 and Ly = 1. By Divergence Criterion (b), the limit does not exist.

The third consequence of the Sequential Criterion is the Squeeze Theorem.
8.5 Squeeze Theorem Suppose that f(z) < g(z) < h(x), z € A, and
lim f(z) = lim h(z) = L .

Then lim,_,. g(z) = L.
This theorem follows from the corresponding theorem for sequences and the Sequential Criterion.

Example 6 lim,_,osinz = 0. Using the estimate 0 < sinz < z for x € [0, 1] and the fact that
the sine function is odd, —|z| < sinz < |z|,z € [—1,1]. A direct application of the Squeeze
Theorem gives the desired limit.

Example 7 lim,_,gsinz/z = 1. This follows readily from the estimate z — a3 /6 < sinz <
x,z € [0,1] (see below). Derive both sides by z, we have 1 — 2/6 < sinz/z < 1. Since sinz/x
is even, this estimate holds on [—1,0) U (0, 1]. By Squeeze Theorem lim,_,osinz/x = 1.

Trigonometric Functions

A rigorous definition of the sine and cosine functions will not be introduced until Chapter 8 of
our textbook. However, in order to have more diverse examples we are obliged to use them. Here



Spring 2024 MATH2050C

we list some basic facts concerning these functions which are used in the subsequent development.

1.
2 a2

sinx:x—ﬁ—f—a—ﬁ—k'- , t €R,

2. The sine and cosine functions are 27-periodic,
3. sin?+cos?zx =1, z € R,

4. sin(x +y) =sinzcosy +sinycosz , and cos(x + y) = cosx cosy — sinz sin y.

We derive from (1) the estimate

r—23/3 <sinz <z, ze€l0,1].

1'3 2175 $7 .’Eg

Since each term 2271 /(2n+1)!—2%"+3 /(2n+3)! is positive when z € [0, 1], sinz < x. Similarly,

Indeed,

one can prove the other inequality.



